On the Number of Rgb Colours We Can Distinguish Partition Spectra

نویسنده

  • E. LÁBOS
چکیده

Colour vision is a physiological phenomenon, and rays are not coloured (Newton, Wright). While counting hues of solar spectrum is a solved problem, the exact number of colours is unknown. Existing colour systems do not provide automatically colour census methods. This work addressed only to the 24 bit RGB-colour system. This complete colour space itself is countable. Discovering principles for ordering colours is a prerequisite of any efficient census algorithm. Colours (r, g, b) we define, as a partition of total n = r + g + b amount of intensity into 3 parts also with r/g and g/b ratios fixed. Partition spectra are the lexicographically sorted list of these partitions. Such and also geometrically defined sub-domains of RGB-cube can be transformed into 1D colour spectra by reshuffling according to their HSV-hue-angles in order to bring similar colours into close neighbourhood. These we call pseudo-solar colour spectra. Our estimation for subjectively discriminated RGB-colours is no more than 200000.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physically Meaningful Rendering using Tristimulus Colours

In photorealistic image synthesis the radiative transfer equation is often not solved by simulating every wavelength of light, but instead by computing tristimulus transport, for instance using sRGB primaries as a basis. This choice is convenient, because input texture data is usually stored in RGB colour spaces. However, there are problems with this approach which are often overlooked or ignor...

متن کامل

The upper domatic number of powers of graphs

Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...

متن کامل

Differentiating Biological Colours with Few and Many Sensors: Spectral Reconstruction with RGB and Hyperspectral Cameras

BACKGROUND The ability to discriminate between two similar or progressively dissimilar colours is important for many animals as it allows for accurately interpreting visual signals produced by key target stimuli or distractor information. Spectrophotometry objectively measures the spectral characteristics of these signals, but is often limited to point samples that could underestimate spectral ...

متن کامل

New results on upper domatic number of graphs

For a graph $G = (V, E)$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_k}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i$ dominates $V_j$ or $V_j$ dominates $V_i$ or both for every $V_i, V_j in pi$, whenever $i neq j$. The textit{upper domatic number} $D(G)$ is the maximum order of an upper domatic partition. We study the properties of upper domatic number and propose an up...

متن کامل

Dynamical distance as a semi-metric on nuclear conguration space

In this paper, we introduce the concept of dynamical distance on a nuclear conguration space. We partition the nuclear conguration space into disjoint classes. This classification coincides with the classical partitioning of molecular systems via the concept of conjugacy of dynamical systems. It gives a quantitative criterion to distinguish dierent molecular structures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007